Modeling IoT Equipment With Graph Neural Networks
نویسندگان
چکیده
منابع مشابه
Modeling with Spiking Neural Networks
This chapter reviews recent developments in the area of spiking neural networks (SNN) and summarizes the main contributions to this research field. We give background information about the functioning of biological neurons, discuss the most important mathematical neural models along with neural encoding techniques, learning algorithms, and applications of spiking neurons. As a specific applicat...
متن کاملRanking Attack Graphs with Graph Neural Networks
Network security analysis based on attack graphs has been applied extensively in recent years. The ranking of nodes in an attack graph is an important step towards analyzing network security. This paper proposes an alternative attack graph ranking scheme based on a recent approach to machine learning in a structured graph domain, namely, Graph Neural Networks (GNNs). Evidence is presented in th...
متن کاملFew-Shot Learning with Graph Neural Networks
We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recentl...
متن کاملGrowing adaptive neural networks with graph grammars
This paper describes how graph grammars may be used to grow neural networks. The grammar facilitates a very compact and declarative description of every aspect of a neural architecture; this is important from a software/neural engineering point of view, since the descriptions are much easier to write and maintain than programs written in a high-level language , such as C++, and do not require p...
متن کاملGraph Classification with 2D Convolutional Neural Networks
Graph learning is currently dominated by graph kernels, which, while powerful, suffer some significant limitations. Convolutional Neural Networks (CNNs) offer a very appealing alternative, but processing graphs with CNNs is not trivial. To address this challenge, many sophisticated extensions of CNNs have recently been introduced. In this paper, we reverse the problem: rather than proposing yet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2902865